3.3.76 \(\int \frac {1}{\sqrt {d \csc (a+b x)} (c \sec (a+b x))^{5/2}} \, dx\) [276]

Optimal. Leaf size=95 \[ \frac {d}{3 b c (d \csc (a+b x))^{3/2} (c \sec (a+b x))^{3/2}}+\frac {E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{2 b c^2 \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}} \]

[Out]

1/3*d/b/c/(d*csc(b*x+a))^(3/2)/(c*sec(b*x+a))^(3/2)-1/2*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*Elliptic
E(cos(a+1/4*Pi+b*x),2^(1/2))/b/c^2/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2)/sin(2*b*x+2*a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2708, 2710, 2652, 2719} \begin {gather*} \frac {E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{2 b c^2 \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d*Csc[a + b*x]]*(c*Sec[a + b*x])^(5/2)),x]

[Out]

d/(3*b*c*(d*Csc[a + b*x])^(3/2)*(c*Sec[a + b*x])^(3/2)) + EllipticE[a - Pi/4 + b*x, 2]/(2*b*c^2*Sqrt[d*Csc[a +
 b*x]]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b*x]])

Rule 2652

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a*Sin[e +
f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]), Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2708

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a)*(a*Csc[
e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n + 1)/(b*f*(m + n))), x] + Dist[(n + 1)/(b^2*(m + n)), Int[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n, 0] && Integers
Q[2*m, 2*n]

Rule 2710

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n, Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n),
 x], x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d \csc (a+b x)} (c \sec (a+b x))^{5/2}} \, dx &=\frac {d}{3 b c (d \csc (a+b x))^{3/2} (c \sec (a+b x))^{3/2}}+\frac {\int \frac {1}{\sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}} \, dx}{2 c^2}\\ &=\frac {d}{3 b c (d \csc (a+b x))^{3/2} (c \sec (a+b x))^{3/2}}+\frac {\int \sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)} \, dx}{2 c^2 \sqrt {c \cos (a+b x)} \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)}}\\ &=\frac {d}{3 b c (d \csc (a+b x))^{3/2} (c \sec (a+b x))^{3/2}}+\frac {\int \sqrt {\sin (2 a+2 b x)} \, dx}{2 c^2 \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}\\ &=\frac {d}{3 b c (d \csc (a+b x))^{3/2} (c \sec (a+b x))^{3/2}}+\frac {E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{2 b c^2 \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.39, size = 79, normalized size = 0.83 \begin {gather*} \frac {d \left (1+\cos (2 (a+b x))+3 \sqrt [4]{-\cot ^2(a+b x)} \, _2F_1\left (-\frac {1}{2},\frac {1}{4};\frac {1}{2};\csc ^2(a+b x)\right )\right ) \sqrt {c \sec (a+b x)}}{6 b c^3 (d \csc (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d*Csc[a + b*x]]*(c*Sec[a + b*x])^(5/2)),x]

[Out]

(d*(1 + Cos[2*(a + b*x)] + 3*(-Cot[a + b*x]^2)^(1/4)*Hypergeometric2F1[-1/2, 1/4, 1/2, Csc[a + b*x]^2])*Sqrt[c
*Sec[a + b*x]])/(6*b*c^3*(d*Csc[a + b*x])^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(529\) vs. \(2(106)=212\).
time = 35.93, size = 530, normalized size = 5.58

method result size
default \(-\frac {\left (2 \sqrt {2}\, \left (\cos ^{4}\left (b x +a \right )\right )+6 \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )-3 \cos \left (b x +a \right ) \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )+6 \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )+\left (\cos ^{2}\left (b x +a \right )\right ) \sqrt {2}-3 \sqrt {2}\, \cos \left (b x +a \right )\right ) \sqrt {2}}{12 b \sqrt {\frac {d}{\sin \left (b x +a \right )}}\, \left (\frac {c}{\cos \left (b x +a \right )}\right )^{\frac {5}{2}} \cos \left (b x +a \right )^{3} \sin \left (b x +a \right )}\) \(530\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/12/b*(2*cos(b*x+a)^4*2^(1/2)+6*cos(b*x+a)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(
b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))
^(1/2),1/2*2^(1/2))-3*cos(b*x+a)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(
b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2
^(1/2))+6*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(
b*x+a))/sin(b*x+a))^(1/2)*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))-3*(-(cos(b*x+a)
-1-sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/
2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))+cos(b*x+a)^2*2^(1/2)-3*2^(1/2)*cos(b*x
+a))/(d/sin(b*x+a))^(1/2)/(c/cos(b*x+a))^(5/2)/cos(b*x+a)^3/sin(b*x+a)*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(d*csc(b*x + a))*(c*sec(b*x + a))^(5/2)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))/(c^3*d*csc(b*x + a)*sec(b*x + a)^3), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))**(1/2)/(c*sec(b*x+a))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6438 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(5/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(d*csc(b*x + a))*(c*sec(b*x + a))^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (\frac {c}{\cos \left (a+b\,x\right )}\right )}^{5/2}\,\sqrt {\frac {d}{\sin \left (a+b\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c/cos(a + b*x))^(5/2)*(d/sin(a + b*x))^(1/2)),x)

[Out]

int(1/((c/cos(a + b*x))^(5/2)*(d/sin(a + b*x))^(1/2)), x)

________________________________________________________________________________________